

Experimental Analysis

Future work

- Frequency convertor (control speed)
- Stepper motor (control blade pitch)
- Hot wire anemometer and/or Particle Image velocimetry.
- Can simulate a complete rotation of the VAWT in real time.
- Effects of dynamic stall can be captured.

Computational Fluid Dynamics (CFD)

2D vs 3D

Turbulence is 3 dimensional

Stall is 3 dimensional

Accuracy = 3D simulation

2D shows poor agreement in the stall condition.

Reference:

Kitsios V: Numerical simulation of lift enhancement on a NACA 0015 airfoil using ZNMF jets: Centre for turbulence research, proceedings of the summer program 2006.

Conclusions, Perspectives, Future Work

- Future experiments:
- Stepper motor-frequency convertor
- (flapping foil experiment)
- CFD LES Wind tunnel validation.
- Real scale bench test.
- European Wind Energy Association (EWEA) conference, Barcelona, Spain 2014: 'Using experimental & CFD models for selecting blade profiles for a small vertical axis wind turbine'.

Appendices

Icam

					Sea hotel load (KWe)	Total installed	
Fanker	180-300+ m	16,00	8,23	13,23	400,00	4000,00	
	115-300+m	15,00	7,72	12,72	300,00	2000,00	1
	150-350m	25,00	12,86	17,86	12000,00	15000,00	
	150-200m	20,00	10,29	15,29	500.00	4000.00	
						,	
Catamaran.	130m	45,00	23,15	28,15	300,00	1500,00	i i
						L'art et le	navière de faire monte 29
	C	Carg	jo sl	nip s	study	Lartet	Picama manifere de faire monte 29
	C	Carg	jo sl		study	Vartes	29
	C	Carg	jo sl	Dip S	study	Verter	29
Ship type	C Max. size po	Sarg	IO SI	Liectrical power available (KW)	% of installed power	Vurret % of Hotel oad	29
Ship type Tanker	Max. size po 2x D=2m, H=	Sarg	O SI	Liectrical power available (KW) 6,00	% of installed power 0,115	Varies	29
Ship type Tanker	Max. size po 2x D=2m, H=	Sarg	Ocation occastle	Dip s	% of installed power 0,15	Variet % of Hotel oad 1,50	29
Ship type Tanker	Max. size po 2x D=2m, H= 2x D=5m H-	Dessible L =3m F a =8m, 2x 44	ocation forecastle midships bove ballast	Liectrical power available (KW) 6,00	% of installed power 0,15	Vortes % of Hotel oad 1,50	29
Ship type Tanker Bulk carrier	Max. size po 2x D=2m, H= 2x D=5m, H= D=2m, H=3n	Sarg	ocation orecastle umidships bove ballast anks & orecastle	Tip s Electrical power available (KW) 6,00	% of installed power 0,15	L'urretk % of Hotel oad 1,50	29
Ship type Tanker Bulk carrier Container ship	Max. size po 2x D=2m, H= 2x D=5m, H= D=2m, H=3n 2 x D=1,5, H=	Dessible L =3m F =8m, 2x ta n F =2,75 F	ocation forecastle anks & forecastle anks &	Liectrical power available (KW) 6,00	% of installed power 0,15 2,30 0,07	Vertext % of Hotel oad 1,50 15,33 0,08	29
Ship type Tanker Bulk carrier Container ship Ro-Ro ship	Max. size po 2x D=2m, H= 2x D=5m, H= D=2m, H=3n 2 x D=1,5, He	Dessible L =3m F =8m, 2x ta n F =2,75 F	ocation orecastle unidships bove ballast anks & orecastle orecastle	Liectrical power available (KW) 6,00	% of installed power 0,15 2,30 0,07	L'urret % of Hotel oad 1,50 15,33 0,08	29
Ship type Tanker Bulk carrier Container ship Ro-Ro ship (conventional)	Max. size po 2x D=2m, H= D=2m, H=3n 2 x D=1,5, H=	>ssible L =3m F =8m, 2x F n F =2,75 F	ocation forecastle anks & forecastle forecastle forecastle	Liectrical power available (KW) 6,00 46,00 10,00 6,00	% of installed power 0,15 2,30 0,07 0,20	Kof Hotel Oad 1,50 15,33 0,08 1,20	29

Γ

Meshing study							
mesh details	1			4			
base value (m)	0,1	0,05	0,05		0,05		
number of prism layers	25	25	30	25	25		
prism layer stretching	1	1	1,1	1	1		
prism layer thickness (m)	0,04	0,035	0,03	0,085	0,009		
(pts./circle)	100	100	100	100	100		
curvature deviation	200	200	200	200	200		
distance (m)	0,01	0,01	0,01	0,01	0,01		
surface growth rate	1,3	1,3	1,3	1,3	1,3		
in gap)	2	2	2	2	2		
absolute surface size							
min. (m)	0,025	0,001	0,001	0,001	0,001		
Max. (m)	0,1	0,1	0,1	0,1	0,05		
Regions							
faces: min. (m)	0,0005	0,001	0,001	0,001	0,0001		
Max. (m)	0,005	0,005	0,005	0,005	0,001		

Meshing study

RANS/LES	RANS	RANS	RANS	RANS	RANS	RANS	RANS	RANS	RANS	RANS
	SA	SA	SA	SA						
	(Stan.)	(Stan.)	(Stan.)	(Stan.)	k-e	k-e	k-e	k-e	SA(HR)	SA(HR)
	steady	steady	steady	steady	steady	steady	steady	steady	steady	steady
	0	5	10	15	0	5	10	15	10	15
Convergence	yes	yes	no	no	yes	yes	yes	no	yes	yes
	30	30	30	30	30	30	30	30	30	30
	1	1	2	2	2	2	2	2	2	2
			1000	1000				1000		
	200	600	runs	runs	300	650	800	runs	500	600

Experimental Analysis:

Ink droplets : effects of stall

Experimental Analysis

Measure the flow (speed)

TE

- hot-bulb anemometer (testo 490 manual hot-bulb anemometer)
- Range (0.1-60m/s -50-200 deg.c) spatial resolution: 0.1deg.

Measurement points

0.8c

0.2c (fwd.)

3 0.4c (aft)

Ican 0.6c + c

icam

Computational Fluid Dynamics (CFD)

RANS approach

- Reynolds decomposition and a turbulence model.
- Averages the vector sum of large & small eddies. (velocity in the viscous term is averaged)
- **Turbulence model** that will statistically calculate the turbulence in the small scale regions close to the boundary surface. (y+=30)

icam

Simulation time & computer Hardware is reduced: However;

Large scale experiments

CTSB Jules Verne wind tunnel (Sep. 2012)

Wind speeds: 5, 6, 7 & 10m/s

Observations:

- Structural vibration is high; a fastening system was needed on top of the turbine above the shaft.
- Bending of the blades occurred, particularly at higher rpm.
- Only a small range of Blade tip speed ratios were tested. (1-3)

Icam

Cp increases as rpm/wind speed increases

Model test 2(Jan. 2014)

 Waiting results: Comparison with Qblade.

Experimental Analysis

ICAM Wind tunnel

Span length = 0.2m

Height = 0.2m

Wind speed = 20m/s - 40m/s

A Pitot tube connected to a differential manometer gives a measurement of : $P_{A}-P_{\infty} = P_{A}-P_{\infty}$

The differential manometers give a pressure difference in mm WC

Models

- 3D printer extrusion process
- Acrylonitrile Butadiene Styrene (ABS).
- NACA 0012, NACA 2415

Rough blade: P120 sandpaper (125 µm particel diameter)

ican

Smooth blade: P4000 sandpaper (6 µm particle diameter)